Evidence for a free radical mechanism of styrene-glutathione conjugate formation catalyzed by prostaglandin H synthase and horseradish peroxidase.

نویسندگان

  • B H Stock
  • J Schreiber
  • C Guenat
  • R P Mason
  • J R Bend
  • T E Eling
چکیده

We have proposed, using styrene as a model, a new mechanism for the formation of glutathione conjugates that is independent of epoxide formation but dependent on the oxidation of glutathione to a thiyl radical by peroxidases such as prostaglandin H synthase or horseradish peroxidase. The thiyl radical reacts with styrene to yield a carbon-centered radical which subsequently reacts with molecular oxygen to give the styrene-glutathione conjugate. We have used electron spin resonance spin trapping techniques to detect the proposed free radical intermediates. A styrene carbon-centered radical was trapped using the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and t-nitrosobutane. The position of the carbon-centered radical was confirmed to be at carbon 7 by the use of specific 2H-labeled styrenes. The addition of the spin trap DMPO inhibited both the utilization of molecular oxygen and the formation of styrene-glutathione conjugates. Under anaerobic conditions additional styrene-glutathione conjugates were formed, one of which was identified by fast atom bombardment mass spectrometry as S-(2-phenyl)ethylglutathione. The glutathione thiyl radical intermediate was observed by spin trapping with DMPO. These results support the proposed free radical-mediated formation of styrene-glutathione conjugates by peroxidase enzymes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The formation of styrene glutathione adducts catalyzed by prostaglandin H synthase. A possible new mechanism for the formation of glutathione conjugates.

The metabolism of styrene by prostaglandin hydroperoxidase and horseradish peroxidase was examined. Ram seminal vesicle microsomes in the presence of arachidonic acid or hydrogen peroxide and glutathione converted styrene to glutathione adducts. Neither styrene 7,8-oxide nor styrene glycol was detected as a product in the incubation. Also, the addition of styrene 7,8-oxide and glutathione to ra...

متن کامل

Metabolism of diethylstilbestrol by horseradish peroxidase and prostaglandin-H synthase. Generation of a free radical intermediate and its interaction with glutathione.

Diethylstilbestrol is carcinogenic in rodents and in humans and its peroxidatic oxidation in utero has been associated with its carcinogenic activity. Horseradish peroxidase-catalyzed oxidation of [14C]diethylstilbestrol and [14C]diethylstilbestrol analogs induced binding of radiolabel to DNA only when the compound contained a free hydroxy group (Metzler, M., and Epe, B. (1984) Chem. Biol. Inte...

متن کامل

The peroxidase-dependent activation of butylated hydroxyanisole and butylated hydroxytoluene (BHT) to reactive intermediates. Formation of BHT-quinone methide via a chemical-chemical interaction.

The food antioxidants butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) are shown to be metabolized to covalent binding intermediates and various other metabolites by prostaglandin H synthase and horseradish peroxidase. BHA was extensively metabolized by horseradish peroxidase (80% conversion of parent BHA into metabolites) resulting in the formation of three dimeric products. O...

متن کامل

Prostaglandin H synthase-catalyzed metabolism and DNA binding of 2-naphthylamine.

The oxidation of the bladder carcinogen 2-naphthylamine (2-NA) by prostaglandin H synthase (PHS) in vitro was examined. Oxygen uptake studies of 2-NA oxidation in the presence of glutathione, as well as extensive product analysis data, are consistent with a one-electron mechanism of 2-NA oxidation by PHS. The formation of 2-nitrosonaphthalene is not observed under any condition. Metabolism stud...

متن کامل

The formation of sulfur trioxide radical anion during the prostaglandin hydroperoxidase-catalyzed oxidation of bisulfite (hydrated sulfur dioxide).

The mechanism of prostaglandin synthase-dependent (bi)sulfite (hydrated sulfur dioxide) oxidation was investigated using an enzyme preparation derived from ram seminal vesicles. The horseradish peroxidase-catalyzed oxidation of (bi)sulfite was used as a model system. Incubation of (bi)sulfite with prostaglandin synthase and arachidonic acid, 15-hydroperoxyarachidonic acid, or H2O2 results in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 261 34  شماره 

صفحات  -

تاریخ انتشار 1986